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ABSTRACT
Multipath flow control has been proposed as a key way to
improve the Internet’s performance, reliability, and flexibil-
ity in supporting changing loads. Yet, at this point, there are
very few tools to quantify the performance benefits; particu-
larly in the context of a stochastic network supporting best
effort flows, e.g., file transfers and web browsing sessions,
where the metric of interest is transfer delay. This paper’s
focus is on developing analysis tools to evaluate flow-level
performance and to support network design when multipath
bandwidth allocation is based on proportional fairness. To
overcome the analytical intractability of such systems we
study closely related multipath approximations based on in-
sensitive allocations such as balanced fairness. We obtain
flow-level performance bounds on the mean per bit delay,
exhibiting the role of resource pooling in the network, and
use these to explore scenarios where increased path diver-
sity need not result in high gains. While insightful these
results are difficult to use to drive network design and ca-
pacity allocation. To that end, we study the large devia-
tions for congestion events, i.e., accumulation of flows, in
networks supporting multipath flow control. We show that
such asymptotics are determined by certain critical resource
pools, and study the sensitivity of congestion asymptotics
to the pool’s capacity and traffic loads. This suggests a dis-
ciplined approach to a capacity allocation problem in mul-
tipath networks based on a linear optimization problem.

Categories and Subject Descriptors
C.2.1 [Computer Systems Organization]: Computer-
Communication Networks—Network Architecture and De-
sign

General Terms
Design, Performance, Theory

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMETRICS’11, June 7–11, 2011, San Jose, California, USA.
Copyright 2011 ACM 978-1-4503-0262-3/11/06 ...$10.00.

1. INTRODUCTION
There has recently been substantial interest in redesigning

the Internet’s data transport mechanisms to support multi-
path flow control so as to exploit path diversity; see e.g.,
[9, 7, 13, 12, 21]. Key benefits of doing so might include:
improved reliability through path/provider diversity, as well
as improved performance and flexibility in supporting highly
variable network loads through resource pooling. Resource
pooling refers to making, possibly distributed, resources ap-
pear to users as a single possibly shared one, typically result-
ing in a higher effective capacity and better statistical mul-
tiplexing. Similarly, in the context of wireless networks one
can expect that concurrently exploiting multiple interfaces,
e.g., cellular and Wi-Fi, would lead to performance benefits.
Additional intriguing scenarios are being considered where
a high bandwidth residential wireless mesh is used to enable
substantially higher uplink wireline capacity to the Internet
by sharing multiple limited capacity upstream residential
broadband wireline links. Fig. 1 shows two scenarios where
one might expect to reap benefits from supporting sessions
with multpath flow control.

While the potential for exploiting path diversity through
multipath flow control is intuitively clear, there exist very
few works in the literature that shed light on flow-level per-
formance and network design. Herein we refer to flow-level
performance, as measures of transfer delays or throughput
achievable in a stochastic network supporting best effort
flows, i.e., file transfers and web browsing sessions. If this
paradigm is to be adopted, there are many fundamental
questions that need to be answered, for example:
• What flow-level throughput gains can we expect over tra-
ditional networks? How sensitive are they to system loads,
and peak rate access network constraints, e.g., due to DSL
or TCP?
• Are there abstractions that can be used to understand the
interaction of multipath sessions with others (e.g., resource
pooling or cutset bounds) and how do these affect perfor-
mance, routing and network dimensioning?
• What measures of robustness are gained when traffic with
multipath flow control is supported?
• What fraction of the traffic needs to have the extra flexi-
bility of multipath flow control to achieve the practical ben-
efits?
• In the residential wireless mesh setting described above,
given cost of relaying traffic across neighboring home net-
works, how far should traffic be relayed to enable effective
sharing of limited uplink capacity?



Our goal in this paper is to make some progress towards
developing the tools needed to partially answer these ques-
tions. For simplicity, we will focus on wireline networks
though our models can also be interpreted in terms of shared
wireless resources.

Figure 1: Top figure: Multipath routing could
provide substantial benefits when there is limited
shared inter-domain bandwidth among providers.
Bottom figure: A residential wireless mesh network
enables home users exploit multiple paths to over-
come limited uplink links to the Internet.

Related Work.
There has been extensive recent work towards understand-

ing how network protocols, e.g., TCP, allocate, or should
allocate, bandwidth among competing flows. Much of this
work has focused on associating a utility function with each
user, and studying mechanisms to maximize the sum of the
users’ utilities. For a fixed set of users, the resulting al-
location can be viewed as optimal in terms of optimizing
network utility. The utility functions may be chosen to re-
flect users’ valuation for allocated resources or can be used
as a device to implement notions of fairness among compet-
ing flows, e.g., proportionally fair, max-min fair, α-fair, see
e.g., [11, 1, 19]. Most notable among these are the alloca-
tions based on proportional fairness ([11]) due to its ease of
implementation, and its performance, robustness and (ap-
proximate) insensitivity properties ([18], [10]). Note that an
allocation is said to be insensitive if its steady state distri-
bution is independent of all traffic characteristics except the
average traffic loads.
Unfortunately, for networks supporting best effort flows,

the relevant user perceived performance metrics will be av-
erages taken over their sojourn in the network, such as file
transfer delay or mean throughput, and the relationship be-
tween these flow averages and the utilities/fairness underly-
ing the network design is not well understood. Early works
in this area focused on the stability of such networks. See
[22] for a survey of these results.
These early papers, however, do not provide concrete tools

for assessing user perceived performance for network engi-

neering. More recent work in [5, 3] provides substantial
insights into why, attempting to do so directly is difficult,
and attribute this difficulty mainly to the dependence of the
steady state distribution of utility based allocations on de-
tailed traffic characteristics, e.g., flow size distribution. In
[5], the same researchers propose balanced fair allocation.
They introduce it as the most efficient insensitive alloca-
tion, in the sense that it is the unique insensitive allocation
for which a link is saturated or a peak rate constraint is met
in every state with atleast one flow (see Section 2 for a de-
tailed discussion of this allocation). Due to its insensitivity,
flow level performance can either be explicitly computed,
approximated or bounded, see e.g., [6, 4, 2].

The tractability of balanced fair allocation has been ex-
ploited to study the flow-level performance of intractable
(sensitive) allocations like proportional fair allocation ([2]).
Balanced fair allocation has been shown to be a good approx-
imation of the proportional fair allocation especially at high
loads ([3]). For a certain class of networks, balanced fair
allocation coincides with proportional fair allocation ([5]).
Further, [18] introduces modified proportional fair alloca-
tion that coincides with proportional fair allocation in an
asymptotic sense, and shows that the modified proportional
fair allocation and balanced fair allocation admit the same
large deviation behavior.

Utility based allocations have been extended to accommo-
date multipath flow control to exploit the benefits of the in-
creased path diversity. However, most of the progress made
in this area concerns the stability and distributed implemen-
tation for these allocations ([9, 7, 20]). Only the following
works study flow-level performance in networks using multi-
path flow control: [16], [15], [10] and [8]. In [16] and [15], the
main performance metric considered is the blocking proba-
bility for flows in a system with admission control that blocks
a flow if it cannot be allocated a certain minimum band-
width. However, a weakness of the approach in [16] and
[15] is that they mostly rely on complex optimization for-
mulations and simulations, and fail to give insights into the
elements in a network that are critical to the performance.

The performance metric considered in [10] is the mean de-
lay experienced by flows in a network using multipath pro-
portional fair allocation. Inspired by the relationship of this
allocation to a related network of processor sharing queues,
they propose an approximation for the mean delay experi-
enced by a (possibly multipath) flow of class s∑

j∈J

(
ajs
µs

)
cj

cj − ρj

where J is a set of virtual resources, ajs is the capacity
required on virtual resource j per unit of bandwidth allo-
cated to class s, (µs)

−1 is the mean flow size, and cj and
ρj are the capacity of and load on virtual resource j ∈ J
respectively. The above approximation suggests that the
delay experienced by a flow is dictated by certain virtual
resources referred to as resource pools, and is related to
the delay experienced by a flow that traverses the resource
pools in a store and forward manner. Their approach is
to transform the multipath network into an equivalent net-
work with single path routing comprised of virtual resources.
This transformation is computationally demanding for large
networks ([14]). Also, [10] fails to give useful insights into
the transformation, the constituent pools or even the terms
ajs and hence, the approximation above is difficult to use



for engineering purposes like capacity allocation, design of
multipath routing/flow control schemes etc. A concrete un-
derstanding of the resource pools affecting flow’s delays is
needed to enable the engineering of such networks. In [8],
multipath network under proportional fair allocation is con-
sidered in a heavy-traffic regime. However, [8] also relies on
the transformation of the multipath network into an equiv-
alent network with single path routing.

Our Contributions.
The main goal of this paper is to develop tools to evalu-

ate mean delay experienced by flows and support network
design when multipath flow control allocation is based on
proportional fairness. However, a study of flow level dy-
namics of proportional fair allocation is in general hard due
to its sensitivity ([5]). Thus, we adopt an approach that
involves studying a more tractable network that uses mul-
tipath balanced fair allocation, a multipath generalization
of the balanced fair allocation introduced in [5]. We obtain
lower and upper bounds on the mean per bit delay, exhibit-
ing its relationship to the capacity and load associated with
certain resource pools. Our bounds take into account com-
peting multipath traffic in the network, and thus our results
go beyond max flow like arguments. Proving these bounds is
a challenging extension of the bounds obtained in [2] for net-
works with single path routing, in part due to a key feature
of the multipath balanced fair allocation which modifies the
splitting of traffic along different routes in accordance with
the state of the network. We also use the bounds to explore
scenarios where peak rate constraints are likely to hurt the
performance gains achievable by adding more routes.
While insightful, the performance bounds are difficult to

drive network design. Hence, we use the large deviations
characteristics of balanced fair allocation obtained in [18]
to zero in on a collection of resources referred to as a crit-
ical pool that plays the dominant role in determining the
likelihood of congestion events involving accumulations of a
large number of flows. Further, these critical resources in-
deed behave as a single pooled resource. We establish this
by studying the sensitivity of the large deviations exponent
to the pool’s capacity. We also use the large deviation be-
havior to present a disciplined approach to a capacity allo-
cation problem for such networks that is based on a linear
optimization problem.
The main contributions of this paper are summarized be-

low:
• We develop tools to study delays experienced by flows and
support network design for a network under multipath pro-
portional fair allocation.
• We obtain a stability condition for multipath balanced fair
allocation.
• For multipath balanced fair allocation, we obtain bounds
on mean per bit delay that exhibit the impact of the capac-
ity and load associated with resource pools on performance.
• We explore scenarios where peak rate constraints can re-
duce the performance gains from the addition of more routes.
• We obtain the most likely mix of the flows of different
classes when there is an accumulation of aggregate number
of flows.
• For the multipath setting, we studied the large deviation
for congestion events to identify critical resource pools.
• We present a disciplined approach to a capacity allocation
problem in the form of a linear optimization problem.

Organization of the paper.
We discuss the system model in Section 2. In Section

3, we discuss two insensitive multipath allocations Random
routing and multipath balanced fair allocations and study
their stability. In Section 4, we obtain bounds on the mean
per bit delay under multipath balanced fair allocation. In
Section 5, we use the large deviation characteristics of mul-
tipath balanced fair allocation to identify and study critical
resource pools and study their sensitivity to the pool’s ca-
pacity. We present some conclusions drawn from the main
discussion of the paper in Section 6, which is followed by an
Appendix which contains discussions of the proofs of some
of the results in the main body of the paper.

2. SYSTEM MODEL
We begin by introducing some notation. Let Z+ denote

the set of all non-negative integers. For any set B, |B| de-
notes the number of elements in the set. For any vectors b,n
whose elements are indexed by some set I, i.e., b = (bi)i∈I
and n = (ni)i∈I , let

bn =
∏
i∈I

bni
i and |a| =

∑
i∈I

ai.

We consider a network where possibly multipath flows ar-
rive, utilize network resources and leave. The network is
comprised of a set L of links where each link l ∈ L has a
capacity cl > 0 bits per second. A flow ϑ arrives at some
time taϑ, brings Dϑ bits and leaves at some time tdϑ given by

Dϑ =
∫ tdϑ
ta
ϑ
σϑ(t)dt where σϑ(t) denotes the rate at which the

flow ϑ is served at time t. We refer to Dϑ as the size of flow
ϑ.

Each flow is associated with some flow class s ∈ S where
S denotes the set of all flow classes. The flows associated
with a class s ∈ S arrive as a Poisson process of rate ξs with
a mean flow size (1/νs) bits. Let ρs = ξs/νs bits per second
be the traffic intensity of class s ∈ S. Let ρ = (ρs)s∈S .
The flows associated with class s are peak rate constrained
(e.g., by an access link, or by the transport mechanism like
in TCP where the finite receiver buffer effectively acts as a
peak rate constraint.) to a rate as ∈ [0,∞] bits per second,
i.e., σϑ(t) ≤ as for any flow ϑ of class s ∈ S. If there
are no peak rate constraints for class s, we set as = ∞.
For any s ∈ S, let Rs denote the set of possible routes
for class s flows where a route is a subset of L. We refer
to the important special case in which |Rs| = 1 ∀ s ∈ S
as the single path routing case. Let A be the route-link
incidence matrix associated with the network, i.e., for l ∈ L
and r ∈ ∪s∈SRs, Al,r = 1 if l ∈ r (route r traverses link
l) and 0 otherwise. The example in Fig. 2 should help the
reader to get a feel for the notation (see the caption). The
results presented in this paper are valid for a much more
general model (see [5] for details) where the flows associated
with each class are generated within sessions and the session
arrivals correspond to independent Poisson processes. In
this model, the flow size and number of flows per session of
class s can have general distributions, and successive flow
sizes can be correlated.

The network state is an integer valued |S|-tuple whose
sth component is the number of flows of class s ∈ S. For
each s ∈ S and rs ∈ Rs, let ϕsrs(x) denote the bandwidth
allocated to the route rs of class s in network state x. For
each s ∈ S, let ϕs(x) =

∑
rs∈Rs

ϕsrs(x) denote the total



Figure 2: For the above network, L = {1, 2, 3, 4},
S = {1, 2} R1 = {r11, r12}, R2 = {r21, r22}, r11 = {1, 2},
r12 = {3, 4}, r21 = {1}, r22 = {2}

.

bandwidth allocated to flows of class s in state x, and assume
it is shared equally among the xs flows. Hence, there exists
some f(x) ∈ F such that

ϕsrs(x) = fsrs(x)ϕs(x), ∀s ∈ S, rs ∈ Rs,

where

F =
∏
s∈S

Fs,

Fs = {fs|fs,rs ≥ 0, ∀rs ∈ Rs;
∑

rs∈Rs

fs,rs = 1} for each s ∈ S.

Thus, (ϕ(x), f(x)) where ϕ(x) = (ϕs(x))s∈S fully charac-
terizes the allocation in network state x. We refer to f :
Z|S|

+ → F as the splitting function. Here, the set F captures
all possible ways to split the bandwidth allocated to various
classes across their respective routes.
The allocated bandwidths satisfy the following linear ca-

pacity constraints∑
s∈S,rs∈Rs

Al,rsϕsrs(x) ≤ cl, ∀l ∈ L, ∀x ∈ Z|S|
+ , (1)

and peak rate constraints given by

ϕs(x) ≤ asxs, ∀s ∈ S, ∀x ∈ Z|S|
+ . (2)

Let

CM
P (x) = {(λ, f) : λ = (λs)s∈S , f ∈ F ,∑

s∈S,rs∈Rs

Al,rsfsrsλs ≤ cl ∀l ∈ L, λs ≤ asxs∀s ∈ S

}
.

Then, (1) and (2) is equivalent to the condition

(ϕ(x), f(x)) ∈ CM
P (x).

In systems where there are no peak rate constraints, i.e.,
as = ∞ ∀ s ∈ S, the above condition simplifies to

(ϕ(x), f(x)) ∈ CM

where

CM = {(λ, f) : λ = (λs)s∈S , f ∈ F and∑
s∈S,rs∈Rs

Al,rsfsrsλs ≤ cl ∀l ∈ L

}
. (3)

The multipath proportional fair allocation, for instance, sat-
isfies (3) in which the allocation

(
λPF (x), fPF (x)

)
in a net-

work state x is a solution to the optimization problem

MULTIPATH-PF given below

max
(λ,f)

{∑
s∈S

xs log(λs) | (λ, f) ∈ CM

}
.

The steady state distribution of multipath proportional fair
(more generally, utility function based allocations) are sen-
sitive to the detailed traffic characteristics which makes an
analysis of their flow level dynamics hard ([5]). Balanced
fair allocation introduced in [5] for the single path routing
setting is much more tractable due to its insensitivity prop-
erties.

The balanced fair allocation belongs to a much larger class
of insensitive allocations. In [5], it is shown that any insensi-

tive allocation corresponds to a positive function Φ : Z|S|
+ →

[0,∞) where the allocation for class s ∈ S in network state
x is given by

ϕs(x) =
Φ(x− es)

Φ(x)

where the vector es ∈ Z|S|
+ has the uth coordinate equal to

one for u = s and 0 otherwise. Further, it is shown that if∑
x∈Z|S|

+

Φ(x)ρx <∞, (4)

then the invariant distribution for a network state x is given
by

π(x) = π(0)Φ(x)ρx

where π(0) is the normalization constant of the distribution.
In the rest of this section, we mainly focus on some of the
important results for the single path routing setting. As
each class is associated with a single route, in the rest of
this section, we use s and the route associated with the class
interchangeably. The balanced fair allocation for the single
path routing setting is characterized by a balance function

Φ : Z|S|
+ → [0,∞) given by ([5])

Φ(x) = max

{
max

s∈S:xs>0

Φ(x− es)

asxs
,max

l∈L

∑
s∈S

Al,s

cl
Φ(x− es)

}

for x ∈ Z|S|
+ \ {0} with Φ(0) = 1, Φ(x) = 0 outside the

positive quadrant. The balanced fair allocation for class s
in network state x is then given by

ϕs(x) =
Φ(x− es)

Φ(x)
.

This allocation satisfies (1) and (2). In [5], it is shown that
if ρ satisfies the following stability condition∑

s∈S,rs∈Rs

Al,sρs < cl ∀l ∈ L, (5)

then the invariant distribution for a network state x is given
by

π(x) = π(0)Φ(x)ρx (6)

where π(0) is the normalization constant of the distribution.
Note that the invariant distribution is insensitive to all the
traffic characteristics except the traffic intensity. We refer to
[5] for an extensive discussion on balanced fair allocation for
the single path routing case. Except for certain networks
([6, 2, 4]), numerical evaluation of mean per-bit delay is



intractable for large |S| due to state space explosion. The
simple explicit bounds for the mean per bit delay τs of a
class s ∈ S obtained in [2] become valuable in such settings.
The bounds are:

τs ≥ max

(
1

as
,max

l∈L

Al,s

cl − αl

)
,

τs ≤ max

(
1

as
,max

l∈L

Al,s

cl

)
+
∑
l∈L

αl

cl

Al,s

cl − αl
(7)

where αl =
∑

sAl,sρs for l ∈ L. Note the intuition here is
as follows. The lower bound is at least that associated with
the peak rate constraint of class s, or that of the bottleneck
link along the route of class s. The upper bound includes
the peak rate constraint or capacity constraint of links along
the path, and an additive term that roughly corresponds to
sending the bits, in a store and forward manner over the
links along the route of class s. Hence, we have a weighted
summation of the mean per bit delays on each link on the
route.

3. RANDOM ROUTING
VS MULTPATH FLOW CONTROL

Our objective in this section and the next is to study and
compare flow level delays in two systems. In the first sys-
tem, for any class s, each flow of class s randomly chooses
one route in Rs. We refer to this as random routing. In the
second system, for any class s, each flow of class s can simul-
taneously use all the routes in the set Rs. The comparison
allows us to gauge the benefits of balancing flow loads across
paths vs balancing traffic (e.g., packet level) across multiple
paths during the lifetime of a flow.

3.1 Random routing
A random routing policy corresponds to a p ∈ F where

each flow of class s ∈ S is routed to route rs ∈ Rs indepen-
dently with probability psrs . We could choose p to optimize
a performance objective like load balancing. Since the route
of each flow of any class s is chosen independently using p,
we can treat the traffic of class s on route rs ∈ Rs as that
of an independent class indexed by (s, rs) with traffic in-
tensity ρ(s,rs) = psrsρs and we let ρR =

(
ρ(s,rs)

)
s∈S,rs∈Rs

.

The route level network state is a vector xR ∈ Z
∑

s∈S |Rs|

where xR(s,rs) denotes the number of flows of class s routed

along route rs ∈ Rs. For a route level network state xR, let
ϕR
(s,rs)

(xR) denote the total bandwidth allocated to flows of
class s routed along rs ∈ Rs, and assume this bandwidth
is shared equitably by these flows. Further, the allocation
must satisfy (1) and (2). For the route level balanced fair
allocation, the allocation for the set of active flows of class
s along route rs is then given by

ϕR
(s,rs)(x

R) =
ΦR(xR − eR

(s,rs)
)

ΦR(xR)
.

We refer to the (single path routing) balanced fair allocation
for this setting as the route level balanced fair allocation,
where the allocation is characterized by the balance function

ΦR : Z
∑

s∈S |Rs| → [0,∞) given by

ΦR(xR) = max

{
max

s∈S,rs∈Rs:x(s,rs)>0

ΦR
(
xR − eR

(s,rs)

)
asx(s,rs)

,

max
l∈L

∑
s∈S,rs∈Rs

Al,rs

cl
ΦR
(
xR − eR

(s,rs)

)}
(8)

for xR ∈ Z
∑

s∈S |Rs|
+ \ {0}, ΦR(0) = 1 and ΦR(xR) = 0

outside the positive quadrant. Here, eR
(s,rs)

∈ Z
∑

s∈S |Rs|

with 1 in the coordinate corresponding to the class (s, rs)
and zero otherwise.

The next result gives the stability condition and provides
bounds on the mean per bit delay experienced by flows of
a class s ∈ S under the route level balanced fair allocation.
To that end, for a given p, let

Γ (p) =

{
µ ∈ R|S|

+ :
∑

s∈S,rs∈Rs

Al,rspsrsµs < cl ∀l ∈ L,

}
.

Then, we have the following result.

Theorem 1. If ρ ∈ Γ (p), the following hold:

(a) The invariant distribution πR
(
xR
)
for the route level

network state xR is given by

πR
(
xR
)
= πR (0)ΦR(xR)(ρR)x

R

(9)

where πR (0) is the normalization constant for the dis-
tribution.

(b) The mean mean per bit delay τt for a class t ∈ S sat-
isfies

τt ≥
∑
r∈Rt

ptr

(
max

{
1

at
,max

l∈L

Al,r

cl − αl

})
and

τt ≤
∑
r∈Rt

ptr

(
max

{
1

at
,max

l∈L

Al,r

cl

}
+
∑
l∈L

αl

cl

Al,r

(cl − αl)

)
where for l ∈ L,

αl =
∑

s∈S,rs∈Rs

Al,rspsrsρs.

We skip the proof as it follows from (7). In particular, the
bounds given above can be proved by noting that

τt =
∑

rt∈Rt

ptrtτ(t,rt)

and using the bounds given in (7) for the mean per bit delay.

3.2 Multipath flow control
Next, we consider the second system in which each flow

of class s can simultaneously use all the routes in the set Rs

by sending its data across on all the routes. Further, the
splitting of the traffic corresponding to a class can change
depending on the network state.

As pointed out in Section 2, corresponding to each insen-
sitive allocation, there is a balance function. However, in the
multipath setting, to fully characterize such an allocation,
we need to further specify the splitting function f(x) for each
network state x. Thus, in the multipath setting, any insen-
sitive allocation is fully characterized by a balance function



and a splitting function defined for all network states. Then,
the allocation for class s in network state x given by

ϕs(x) =
Φ(x− es)

Φ(x)
(10)

and the bandwidth allocated on the route rs ∈ Rs is given
by

ϕs,rs(x) = fs,rs(x)ϕs(x).

We define a multipath balanced fair allocation for this sys-
tem as the insensitive allocation obtained using the balance
function Φ : Z|S| → [0,∞) defined as

Φ(x) = max

{
max

s∈S:xs>0

Φ(x− es)

asxs
, (11)

min
f∈F

max
l∈L

( ∑
s∈S,rs∈Rs

Al,rs

cl
fs,rsΦ(x− es)

)}

for x ∈ Z|S| \ {0}, Φ(0) = 1 and Φ(x) = 0 outside the
positive quadrant. For any network state x, the splitting
function f(x) is equal to f∗(x) which is a minimizer of the
optimization problem given below:

min
f∈F

max
l∈L

( ∑
s∈S,rs∈Rs

Al,rs

cl
fs,rsΦ(x− es)

)
. (12)

Note that the splitting function need not be unique. Also,
note that such allocations satisfy (1) and (2). Further, note
that the splitting function f∗(x) of the allocation is state-
dependent and recursively defined. Also,

Φ(x) = max

{
max

s∈S:xs>0

Φ(x− es)

asxs
, (13)

max
l∈L

( ∑
s∈S,rs∈Rs

Al,rs

cl
f∗
s,rs(x)Φ(x− es)

)}
.

Also, Lemma 1 in Appendix A establishes that the balance
function associated with multipath balanced fair allocation
defined above is unique.
Next, we study the stability of the multipath balanced fair

allocation. Let

ΓM =
{
µ ∈ R|S|

+ : µ ∈ Γ (f) for some f ∈ F
}
. (14)

Then, the next result gives the stablity region. See Appendix
A for a proof.

Theorem 2. If the offered load ρ ∈ ΓM , then the invari-
ant distribution for a network state x is given by

π(x) = π(0)Φ(x)ρx (15)

where π(0) is the normalization constant of the distribution.

From Lemma 1 (see Appendix A) and (15), we can con-
clude that the probability of having no flows in the system
for the multipath balanced fair allocation is greater than or
equal to that of any multipath insensitive allocation.
Also, note that Γ (p) ⊆ ΓM for any p ∈ F . Thus, if a

network using route level balanced fair allocation is stable, it
will be stable when using multipath balanced fair allocation.

4. PERFORMANCE BOUNDS
In this section, we move beyond stability conditions and

study the mean per bit delay for such a system. In this sys-
tem too, the numerical evaluation of mean per bit delay for
the balanced fair allocation is intractable for large |S|. Thus,
we resort to bounding the mean per bit delay. We consider
bounds that are based on pooled capacity constraints. The
following definitions capture how such pooling is considered.

Definition 1. A (possibly multipath) flow class s is said
to be supported by H ⊂ L if for each rs ∈ Rs, |rs ∩H| > 0,
i.e., each route of class s traverses at least one link in H. Let
S(H) ⊂ S denote the set of flow classes that are supported
by H.

Definition 2. A (possibly multipath) flow class s is said
to be partially supported by H ⊂ L if for some rs ∈ Rs,
|rs ∩ H| > 0, i.e., at least one route of class s traverses at
least one link in H. We let P(H) ⊂ S denote the set of flow
classes that are partially supported by H.

Note that S(H) ⊂ P(H), i.e., if a flow is supported by H,
then it is also partially supported by H. Next, for each class
s ∈ S, we define the following collections of resource pools:

Bs = {H ⊆ L : s ∈ S(H)} and

Ds =
{
H ∈ Bs : there exists no H

′
∈ Bs,

H
′
̸= H such that H

′
⊂ H

}
.

Thus, Bs is the collection of resource pools that support
flow class s. The set Ds corresponds to a minimal collec-
tion of pooled resources that support flow class s, i.e., pools
which can not be reduced and still support class s. For the
network in Fig. 2, D1 = {{1, 3} , {1, 4} , {2, 3} , {2, 4}} and
D2 = {{1, 2}}. In the next section, we will see that the
bounds on mean per bit delay for a class s ∈ S will be dic-
tated by the cumulative capacities and traffic associated the
resource pools in Bs and Ds.

In general, a multipath flow may traverse a set of links H
multiple times, or may have constituent routes that traverse
those resources different numbers of times. To account for
these we define the following.

Definition 3. For any flow class s, route rs ∈ Rs and
set H ⊆ L, let ns,rs(H) = |rs∩H|, i.e., ns,rs(H) denotes the
number of links (possibly zero) in H that rs traverses. Let
ns(H) = minr∈Rs ns,r(H) be the minimum multiplicity with
which the class s is supported by H. Similarly, let ns(H) =
maxr∈Rs ns,r(H) be the maximum multiplicity with which
the class s is supported by H.

For the network in Fig. 2, if H = {1, 2}, then n1(H) = 0,
n1(H) = 2 and n2(H) = n2(H) = 1. Finally, let

c(H) =
∑
l∈H

cl

denote the pooled capacity of an H ⊂ L,

ρ(H) =
∑

s∈S(H)

ns(H)ρs

denote the aggregate load of classes supported byH account-
ing for multiplicities, and

ρ(H) =
∑

s∈P(H)

ns(H)ρs



be an upper bound on the aggregate load partially supported
by H also accounting for multiplicities.
In this section, we obtain bounds on the mean per bit de-

lay of a flow of class t ∈ S under balanced fair allocation
with multipath flow control assuming that the stability con-
dition holds, i.e., the offered load ρ ∈ ΓM . From Little’s
theorem and (15), the mean per bit delay τt for any class
t ∈ S satisfies

τt =
E[Xt]

ρt
=

1

ρt

∑
x

xtπ(x) =
1

ρt

∑
x xtΦ(x)ρ

x∑
x Φ(x)ρx

where
∑

x stands for
∑

x∈Z|S|
+

. The numerical evaluation

of mean per bit delay using the above expression becomes
intractable as the number of classes of flows becomes large.
Also, note that evaluation of Φ(x) using (11) involves linear
programming for each network state x. Hence, the simple
explicit bounds on mean per bit delay obtained in the rest
of this section are invaluable towards understanding for the
flow level performance in a general network with multipath
routes and flow control. These bounds are generalizations
of those in [2] which only consider the single path routing
setting. The proofs of the bounds presented in this section
use ideas from [2], but require substantial additional devel-
opment to show, due to the state dependent nature of the
splitting function f∗(x).

4.1 Lower bound
The following theorem gives a lower bound on the mean

per bit delay τt of a class t ∈ S.

Theorem 3. For any class t ∈ S,

τt ≥ max

{
1

at
, max
H∈Bt

(
nt(H)

c(H)− ρ(H)

)}
.

Proof. For an H ⊂ L, consider a link l ∈ H. From (13),

Φ(x) ≥
∑

s∈S,r∈Rs

Al,r

cl
f∗
s,r(x)Φ(x− es).

Using (15), for any link l ∈ H, we have

π(x) ≥
∑

s∈S,r∈Rs

Al,r

cl
f∗
s,r(x)ρsπ(x− es).

Further, we can write

π(x) =
∑
l∈H

cl
c(H)

π(x)

≥
∑
l∈H

cl
c(H)

∑
s∈S,r∈Rs

Al,r

cl
f∗
s,r(x)ρsπ(x− es)

≥ 1

c(H)

∑
s∈S,r∈Rs

ns,r(H)f∗
s,r(x)ρsπ(x− es)

≥ 1

c(H)

∑
s∈S(H)

ns(H)ρsπ(x− es).

Thus, we have (using
∑

x for
∑

x∈Z|S|
+

)

E[Xt] =
∑
x

xtπ(x) ≥
∑
x

xt
c(H)

∑
s∈S(H)

ns(H)ρsπ(x− es)

=
∑

s∈S(H)

ns(H)ρs
c(H)

∑
x

xtπ(x− es)

=
∑

s∈S(H)\{t}

ns(H)ρs
c(H)

∑
x

xtπ(x− es)

+
nt(H)ρt
c(H)

(∑
x

(xt − 1)π(x− et) +
∑
x

π(x− et)

)

=
∑

s∈S(H)\{t}

ns(H)ρs
c(H)

E[Xt] +
nt(H)ρt
c(H)

(E[Xt] + 1)

=
ρ(H)

c(H)
E[Xt] +

nt(H)ρt
c(H)

.

From the above inequality, we conclude

τt =
E[Xt]

ρt
≥ nt(H)

c(H)− ρ(H)
.

Since the above inequality holds for any subset H of L,
nt(H) = 0 for H /∈ Bt, and τt ≥ 1/at, the theorem fol-
lows.

Intuitively, the lower bound for mean per bit delay is at
least that associated with the peak rate constraint of class
t, or that of the bottleneck resource pool associated with
the routes of class t. We consider the network in Fig. 2 to
stress that a lower bound based on pools in Dt alone may
not be tight. Let ρ1 = 1 and ρ2 = 2 − ϵ. Suppose we are
interested in bounding the performance of flow class 1. Any
lower bound for flow class 1 using a pool in D1, involves two
resources with sum capacity 2, say link 1 and link 3, i.e.,
H = {1, 3}, whence c(H) = 2 and ρ(H) = 1 since only flow
class 1 is supported by H. The lower bound is thus

τ1 ≥ 1

c(H)− ρ(H)
= 1.

Now consider the set H
′
= {1, 2, 3}. Both flow classes are

supported byH
′
and thus we get a much tighter lower bound

τ1 ≥ n1(H
′
)

c(H′)− ρ(H′)
=

1

3− 1− (2− ϵ)
=

1

ϵ
.

4.2 Upper bound
One can also show an upper bound on the mean per bit

delay of a class t ∈ S. Let

bt = max

{
1

at
,

(
max
H∈Dt

n̄t(H)

c(H)

)}
where bt roughly is the bottleneck resource/peak rate con-
straint. Our upper bound is given in the following theorem:

Theorem 4. For any t ∈ S, if ρ̄(H) < c(H) ∀ H ∈ Dt,
then

τt ≤ bt +
∑

H∈Dt

ρ̄(H)

c(H)

(
n̄t(H)

c(H)− ρ̄(H)

)
.



The proof of the upper bound is quite long and due to space
constraints, we are not able to include the complete argu-
ment in this paper. However, the key intermediate results
and a sketch of the proof are given in Appendix B. We can
see that the upper bound includes the peak rate constraint
or capacity constraint of pooled resources along the path,
and an additive term that roughly corresponds to sending
the bits, in a store and forward manner over the pooled re-
sources along the route of class s. The expression for the
upper bound provides some rough insights into how a flow
is delayed in such a system.
Though the bound can be loose (especially when |Dt| is

large or when ρ̄(H) is close to c(H) for some H ∈ Dt), it
is the only non-trivial upper bound available for mean per
bit delay in a system using multipath routing with multipath
flow control. Further, we can use the upper bound to provide
mean delay guarantees to a class in such a system.
Another approach to obtain bounds on performance for

networks using multipath routing with multipath flow con-
trol is to transform the original network to an equivalent
network (for e.g., see [10], [8]) with single path routing, and
apply bounds in [2] to it. We feel that our lower bound is
going to be close to the lower bound obtained using this ap-
proach. However, the upper bound obtained for the equiv-
alent network can be much better than our upper bound.
But, as pointed out in Section 1, this approach is computa-
tionally demanding for large networks.

4.3 Comparisons and examples
In Section 3, we compared the throughput of a system

using random routing with balanced fair allocation against
a system using multipath routing and multipath flow control
with balanced fair allocation. We saw that the latter has a
larger stability region. In this section, we compare mean per
bit delay for the two systems using the bounds obtained in
the previous sections.

Figure 3: Example: One multipath class competing
with n unipath classes

Consider the network shown in Fig. 3 being shared by one
multipath class with peak rate constraint a and n unipath
classes without any peak rate constraints. Each route in the
network comprises a link of capacity c and a link of capacity
cb where c << cb. The routes used by the classes should be
clear from the figure: the multipath class is using n routes
and each unipath class is using a different route. Note that
the above network captures a scenario that can arise in the

residential wireless mesh network in Fig. 1 in which there is
only one home user using multipath routing.

If the network uses random routing where the multipath
class chooses a route for a flow independently and with equal
probability, the following upper bound τUB

r on mean per
bit delay τr of the multipath class can be obtained using
Theorem 1

τr ≤ τUB
r = max

(
1

a
,
1

c

)
+

(
1

c

)
γ + λ

c− (γ + λ)
(16)

+

(
1

ncb

)
γ + λ

cb − (γ + λ)
.

If the network uses multipath flow control, the following
lower bound on mean per bit delay τm of the multipath
class can be obtained using Theorem 3

τm ≥ max

(
1

a
,

1

n (c− (γ + λ))

)
.

The improvement in delay by using multipath flow control
is captured by G = τr

τm
which can be upper bounded using

the above bounds as given below

G ≤ min (a, n (c− (γ + λ))) τUB
r .

Intuitively, we would expect G to increase with the number
of routes n of the multipath class due to increased statistical
multiplexing. However, this need not be the case always as
shown below. Since c << cb, the first two terms in (16)
dominate τUB

r and thus, τUB
r does not change much with

n. From the above expression, we can conclude that we can
expect a linear improvement in mean per bit delay for multi-
path flow control only if a > n (c− (γ + λ)). Thus, as far as
improvement in delay performance with multipath flow con-
trol is concerned, a key factor is whether the peak rate con-
straint exceeds the average spare capacity n (c− (γ + λ)).
Thus, adding more routes to a system may not always help.

This can also be inferred from Fig. 4 where we compare
the mean per bit delay of the multipath class for n = 2 and
n = 4. The data points are obtained from a discrete event
simulation (an event comprises of an arrival or a departure
of a flow) carried out for different values of traffic intensity
λ of the multipath class. The active flows are served at
a rate determined by the balanced fair allocation. Each
data point corresponds to a simulation run involving roughly
105 flows of each class. We set c = 1, cb = 2, a = 0.5
and γ = 0.25 and simulated the networks with multipath
balanced fair allocation. We can see that the improvement
in delay performance by adding two more routes is minimal
for low loads where the peak rate constraints and the average
spare capacity are comparable whereas the improvement for
larger loads where the peak rate constraint dominates the
spare capacity. We have also plotted the lower and upper
bounds for the mean per bit delay of the multipath class
obtained using Theorem 3 and 4 which are quite good for
this example.

5. BALANCED FAIR: LARGE DEVIATIONS
In this section, we use the large deviation characteristics of

networks under single path and multipath balanced fair allo-
cations to obtain insights that are useful in network design.
As we have seen in the previous sections, directly studying
the mean delay is often very difficult and hence, we consider
meaningful alternatives. We focus on the events in a network



Figure 4: A comparison of mean per bit delay of the
multipath class for different n

where there are accumulations in the aggregate number of
flows. Accumulation of flows in the network would loosely
translate to an increase in the delay seen by the flows. How-
ever, large deviations in delays could be due to several other
reasons too (see [17]). In Sections 5.1 and 5.2, we study large
deviations in the total number of flows. Though single path
routing is a special case of multipath routing, for clarity, we
start by considering it on its own. The notation used for the
two settings are similar and hence, we use a superscript or
(sometimes) subscript U for the terms associated with single
path routing, and a superscript or (sometimes) subscript M
is used for the multipath setting. Also, in this section, we
assume that there are no peak rate constraints, i.e., as = ∞,
∀ s ∈ S and hence, we ignore them.

5.1 Single route networks
We consider the single path routing setting where each

class is associated with a single route. In the following, we
use s and the route associated with the class interchangeably.
Let

ΛU =

{
λ ∈ R|S| :

∑
s∈S

Alsλs ≤ cl ∀l ∈ L

}
.

Define set KU ⊂ R|S|
+ as follows:

γ = (γs)s∈S ∈ KU ⇐⇒ {eγs}s∈S ∈ ΛU .

Let the function δKU be given by

δKU (γ) =

{
0, γ ∈ KU ,

∞, γ /∈ KU .

Let δ∗KU denote the convex conjugate function of δKU , i.e.,

δ∗KU (x) = sup
γ∈R|S|

(< γ,x > −δKU (γ)) .

Note that δ∗KU (x) is simply an alternative way to write the
maximum value of sum log utility subject to the capacity
constraints ΛU . A proportional fair allocation (note that
proportional fair allocation need not be unique for a state x
with xs = 0 for some s ∈ S as the choice of allocation for

class s will not affect the objective function as long as we do
not violate any capacity constraints)

(
λPF
s (x)

)
s∈S in state

x is an optimizer to the above problem and hence,

δ∗KU (x) =
∑
s∈S

xs log
(
λPF
s (x)

)
.

In [18], the following large deviation result was proved for
the single path routing setting:

lim
n→∞

log
(
πU
BF (nx)

)
n

= −LU (x). (17)

where πU
BF () denotes the steady state distribution under bal-

anced fair allocation and

LU (x) = δ∗KU (x)−
∑
s∈S

xs log(ρs).

The above result presents an interesting relationship be-
tween the large deviation characteristics of balanced fair al-
location and the proportional fair allocation. Hence,

πU
BF (nx) = ζU (n)e−nLU (x) for large n (18)

and some sub-exponential function ζU (n). Thus, the like-
lihood of accumulating a large number of flows, and the
associated mix is determined by

x∗ = argmin{x:xs≥0 ∀s∈S and
∑

s∈S xs=1}L
U (x) (19)

This mix is a useful vector which helps us to find the classes
and resources that require attention from the capacity al-
location point of view. For instance, if |S| = 3 and x∗ =
[0.2 0.8 0], then a typical congestion event will involve a
large number of flows of the second class, and thus we can
take steps to remedy this. Also, from (18), LU (x∗) is roughly
the negative of the rate of exponential decay along the di-
rection x∗). We will refer to LU (x∗) as the LD exponent.
The next result gives an expression for x∗ and LU (x∗).

Theorem 5. For the single path routing setting,

xs
∗ = bUnU

s ρs ∀s ∈ S and LU (x∗) = log(d∗U ),

where bU =
1∑

u∈S n
U
u ρu

, nU
s =

∑
l∈LU

crit

Als,

LU
crit =

{
l :
∑
s∈S

Alsρsd
∗
U = cl

}
, d∗U = min

l∈L

(
cl∑

s∈S Alsρs

)
.

The above result can be proved using following three facts:
(i) δ∗KU (.) is a convex function and hence, optimization prob-
lem in (19) is convex.
(ii) From [18], the subgradient set of δ∗KU (.) satisfies{

γ : [eγs ]s∈S ∈ ΛPF (x∗)
}
⊂ ∂δ∗KU (x∗)

where

ΛU
PF (x

∗) = {λ : λ is a proportional fair allocation

in the state x∗} .

(iii) A proportional fair allocation λ for state x∗ satisfies
([11])

λs =
x∗s∑

l∈LAlrspl
∀s ∈ {u : x∗u > 0}



where ∀ l ∈ L, pl ≥ 0 and (Aλ)l ≤ cl, and
∑

l∈L pl(cl −
(Aλ)l) = 0.
The result suggests that for a class s ∈ S, the traffic in-

tensity ρs and the number of links in LU
crit traversed by the

class are the two critical factors that decide its contribution
to accumulation in aggregate number of flows.
This large deviation characterization motivates an approach

to capacity allocation. Here, we consider the problem of as-
signing link capacities cl to maximize the LD exponent so
that

∑
l∈L cl ≤ ctot for some ctot > 0. Thus, we are roughly

minimizing the probability that a large number of flows ac-
cumulate. Since LU (x∗) = log(d∗U ), we can use the definition
of d∗U to get an equivalent linear optimization problem:

min
k,(cl)l∈L

{
k |

∑
l∈L

cl = ctot, k
∑
s∈S

Alsρs ≥ cl for all l ∈ L

}
.

It can be shown (using the KKT optimality conditions) that
the optimal allocation is given by c∗l = k∗

∑
s∈S Alsρs ∀ l ∈

L where k∗ > 0 is chosen so that
∑

l∈L c
∗
l = ctot . The result

suggests a simple rule of thumb: allocating bandwidth in
proportion to the load being carried by the links minimizes
the likelihood of network congestion.

5.2 Multipath networks
Here, we consider a more general setting where the classes

can send their traffic through more than one route. Let

ΛM =
{
λ ∈ R|S|

+ : for some f ∈ F , (λ, f) ∈ CM
}
.

As done above, we define the set KM ⊂ R|S| as follows:

γ = {γs}s∈S ∈ KM ⇔ λ = {eγs}s∈S ∈ ΛM .

Let the function δKM be given by

δKM (γ) =

{
0, γ ∈ KM ,

∞, γ /∈ KM .

Let δ∗KM denote the convex conjugate function of δKM , i.e.,

δ∗KM (x) = sup
γ∈R|S|

(< γ,x > −δKM (γ)) .

An optimizer to the above problem corresponds to a solution(
λPF
s (x)

)
s∈S of the optimization problem MULTIPATH-PF

given in Section 2.
Although (17) is proved in [18] for the case where a flow

class uses only a single route, it can be shown that a similar
result holds for the case where each flow class routes its
traffic through multiple routes, i.e.,

lim
n→∞

log
(
πM
BF (nx)

)
n

= −LM (x)

where LM (x) = δ∗KM (x)−
∑
s∈S

xs log(ρs),

and πM
BF denotes the steady state distribution of the multi-

path balanced fair allocation obtained in Section 3.2. Thus,
the most likely mix x∗ of the flows of different classes when
there is an accumulation in the aggregate number of flows is
given by

x∗ = argmin{x:xs≥0 ∀s∈S and ∑
s∈S xs=1}L

M (x).

Next we consider the following linear optimization prob-
lem referred to as OPT-MAXMIN in the sequel:

max
dM ,f

dM such that∑
s∈S

∑
rs∈Rs

Alrsfsrsρs ≤ cl ∀l ∈ L; (20)

∑
rs∈Rs

fsrs = dM ∀s ∈ S; (21)

fsrs ≥ 0 ∀rs ∈ Rs, ∀s ∈ S. (22)

Let
(
d∗M , f

′
)

be a solution to the above problem, and let(
p
′
l

)
l∈L

, (αs)s∈S and (βsrs)s∈S,rs∈Rs
be corresponding op-

timal Lagrange multipliers associated with (20), (21) and
(22) respectively. Then, the next result gives the most likely
direction for overflow. We skip a discussion of the proof as it
is similar in flavor to that for the single path routing setting.

Theorem 6. For the multipath routing setting,

xs
∗ = bMnM

s ρs ∀s ∈ S and LM (x∗) = log(d∗M )

where bM =
1∑

u∈S nuρu
, nM

s =
∑
l∈L

p
′
l

∑
rs∈Rs

Alrsf
′
srs and

d∗M is the maximum value of the objective function in OPT-
MAXMIN.

Let LM
crit =

{
l ∈ L : p

′
l > 0

}
be the set of links that are

critical to the exponent. Similar to the single path setting,
for a class s ∈ S, the traffic intensity ρs and the number of
critical links traversed by the class are the two factors that
decide its contribution to an accumulation in the aggregate
number of flows. As the classes can split their traffic along
multiple routes, there is more interdependence between the
flow classes. Hence, we can expect more critical links and
classes to contribute to the most likely mix than in the single
path setting.

Like in the single path routing case, we use the large de-
viation behavior of balanced fair allocation to design net-
works in which the probability of overflows in the aggregate
number of flows is less. We consider the problem of assign-
ing link capacities cl to maximize the LD exponent so that∑

l∈L cl ≤ ctot for some ctot > 0. Since LM (x∗) = log(d∗M )
and d∗M is obtained by optimizing OPT-MAXMIN, we can
maximize LM (x∗) by solving the following linear program:

max
dM ,(cl)l∈L,f

dM such that∑
s∈S

∑
rs∈Rs

Alrsfsrsρs ≤ cl ∀l ∈ L;
∑

rs∈Rs

fsrs = dM ∀s ∈ S;

fsrs ≥ 0 ∀rs ∈ Rs, ∀s ∈ S;
∑
l∈L

cl = ctot.

5.3 Sensitivity of LD exponent
In this section, we study the sensitivity of the LD expo-

nent to link capacities and the capacity of collections (pools)
of links. This study of sensitivity will help us to identify
the resources/pools of resources that are critical to the LD
exponent and thus, to the accumulation of flows in the net-
work. It is intuitive to expect that addition of capacity to
certain links or resource pools should reduce the likelihood



of congestion. However, we show that the rate of increase
in the exponent decreases with the capacity of associated
link/resource pool. One can also show that the LD expo-
nent is insensitive to the capacities of links l /∈ LU

crit for
the single path routing setting and to the capacities of links
l /∈ LM

crit in the multipath routing setting. We are now left
to study the relationship between LD exponent and the re-
maining links.
First, we consider a simple but insightful example shown

in Fig. 5. For all positive values of c and ρs for s ∈ S,
L(x∗) = log(d∗U ) = log

(
c∑

u∈S ρu

)
is a differentiable func-

tion of c and ρs . Hence,

∂LU (x∗)

∂c
=

1

c
and

∂LU (x∗)

∂ρs
= − 1∑

u∈S ρu
.

Thus the rate of decrease of LU (x∗) with c decreases as we
increase c. Thus if the link already has a large capacity, we
require a large addition of capacity to obtain a significant
increase in the LD exponent. From the above result, we
can also infer that if the cumulative traffic intensity is high,
we need a large decrease in the offered load to achieve a
significant reduction in the LD exponent.

Figure 5: Example: A single link shared by |S|
classes

A similar result holds for the single path routing setting
when

∣∣LU
crit

∣∣ = 1, i.e., there is only a single critical link. Let

LU
crit = {lB}. Then, using Theorem 5, we can show that

d∗U = log
(

clB∑
s∈S Alsρs

)
, and that we can partially differen-

tiate d∗U with respect to clB at clB to obtain

∂L(x∗)

∂clB
=

1

clB
and

∂L(x∗)

∂cl
= 0 ∀ l ∈ L \ {lB} ,

and that we can partially differentiate d∗M with respect to
ρs for s ∈ S at ρs to obtain

∂L(x∗)

∂ρs
= − Als∑

u∈S Aluρu
.

We close the discussion for the single path routing setting
by pointing out that for the case in which

∣∣LU
crit

∣∣ > 1, any

small decrease in the capacity of a link l ∈ LU
crit will result

in a network with only l as the critical link.

5.3.1 Resource pools in the multipath routing setting
Next, let us consider the multipath flow control setting

and obtain a collection of links P(ρ) ⊂ L which behaves al-
most like a single pooled resource as far as LD exponents are
concerned. This is a key feature associated with the notion
of resource pooling discussed in [21]. As we will see, the
pools can vary with changes in the offered load and hence,

the dependence on ρ. However, for notation simplicity, we
use P for P(ρ). In the sequel, we obtain P ⊂ L such that

∂L(x∗)

∂cl
=

1∑
l
′∈P cl′

∀ l ∈ P.

On comparing above expression with (23), we see that it
is as if there is a single shared resource P with capacity
cP =

∑
l
′∈P cl′ such that

∂L(x∗)

∂cP
=

1

cP
.

In the following, we refer to P as the critical pool in the
network.

Let Scrit = {s ∈ S : x∗s > 0}. From Theorem 6, we have

Scrit =

{
s ∈ S : ρs > 0,

∑
l∈L

p
′
l

∑
rs∈Rs

Alrsf
′
srs > 0

}
. (23)

For a class s ∈ Scrit, we define the set of links critical with
respect to class s as

Lcrit(s) =

{
l ∈ L : p

′
l

∑
rs∈Rs

Alrsf
′
srs > 0

}
.

From (23), we see that Lcrit(s) is non-empty for any s ∈
Scrit. Further, we can show that ∪s∈ScritLcrit(s) = Lcrit.
We define the Class Coupling Graph (CCG) as (Scrit, E)
where for s1, s2 ∈ Scrit, Es1,s2 = 1 if |Lcrit(s1) ∩ Lcrit(s2)| >
0, i.e, the classes s1 and s2 share a critical link.

To obtain the single resource pool, we make the following
assumptions:
A1 : The CCG is strongly connected.
A2 : For any s ∈ Scrit, Alrs ∈ {0, 1} ∀ l ∈ L and rs ∈ Rs.

A3 : For any s ∈ Scrit, f
′
s,rs > 0 ∀rs ∈ Rs.

A4 : For any s ∈ Scrit and any rs ∈ Rs, |rs ∩ Lcrit(s)| = 1.
For s ∈ Scrit and rs ∈ Rs, let l

∗(rs) be the element in
rs ∩ Lcrit(s). The next result gives the critical pool. The
proof is long and due to space constraints, we are not able
to include it in the paper.

Theorem 7. (Single critical pool: Sensitivity) Under
Assumptions A1-A4,

x∗s =

{
ρs∑

u∈Scrit
ρu

, ∀s ∈ Scrit,

0 , ∀s /∈ Scrit,
(24)

and d∗M =

∑
l∈Lcrit

cl∑
s∈Scrit

ρs
. (25)

Further, there is a collection of links
P = {l∗(rs) : rs ∈ Rs for some s ∈ Scrit} that satisfies

∂L(x∗)

∂cl
=

1∑
l
′∈P cl′

∀ l ∈ P and
∂L(x∗)

∂cl
= 0 ∀ l /∈ P.

Assumptions A1 and A3 together ensure that for a small
enough change in the capacity of a link in P, traffic going
through other links in P can be shifted so that the effect
of the change in capacity gets spread over all the links in
P. Consider the example in Fig. 6 where three multipath
classes of traffic intensities 2 , 1 and 1 bits per second are
sharing the network. The capacities (measured in bits per
second) of the links are indicated near the link in the figure.



Using Theorem 7, we can show that the shaded links form
the critical resource pool. This example illustrates the use-
fulness of Theorem 7: intuition would only suggest that we
need to allocate more capacities to links being used by class
1. However, the critical pool contains the starred link too
which can be attributed to the coupling between flow classes
1 and 2.

Figure 6: Example: x∗ = [0.6667, 0.3333, 0] and the
critical links are shaded.

6. CONCLUSIONS
We developed the first flow level performance bounds for

networks supporting multipath flow control. Further, we
studied large deviation for congestion events, and presented
a possible approach to capacity allocation for such networks.
Some practical implications of our work are listed below:
(a) Theorem 3 and Section 4.3 suggest that when the spare
capacity in the most congested resource pool of a multpath
class is close to the access rate constraint of that class, gains
from additional routes will be negligible.
(b) Theorems 3 and 4 suggest that the resource pools in Bt

play a critical role in determining the performance of class
t, and the spare capacity( ≈ c(H) − ρ(H) ≈ c(H) − ρ̄(H))
loosely captures the role of a pool H ∈ Bt.
(c) Using Theorem 7, we can obtain the resource pool that
is most critical in terms of resulting in an accumulation of
the aggregate number flows in the network.
(d) Section 5.2 provides a simple, intuitive capacity alloca-
tion scheme that minimizes the chances of an accumulation
of the aggregate number of flows in the network. The scheme
essentially allocates capacity in proportion to the load car-
ried by links under an optimized multipath flow allocation.
This work provides initial steps towards tackling the many

open questions (see Section 1) associated with possible adop-
tion of mulipath flow control in future networks. Addressing
these challenging questions will be part of our future work.
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[13] P. Key, L. Massoulié, and D. Towsley. Path selection and
multipath congestion control. In Proc. IEEE INFOCOM,
pages 109–120, May 2007.

[14] C. N. Laws. Resource pooling in queueing networks with
dynamic routing. Advances in Applied Probability,
24:699–726, 1992.

[15] J. Leino and J. Virtamo. Insensitive traffic splitting in data
networks. In Proceedings of ITC, pages 1355–1364, Beijing,
China, 2005.

[16] J. Leino and J. Virtamo. Insensitive load balancing in data
networks. Comput. Netw., 50:1059–1068, June 2006.

[17] M. Mandjes and B. Zwart. Large deviations of sojourn
times in processor sharing queues. Queueing Syst. Theory
Appl., 52(4):237–250, 2006.

[18] L. Massoulie. Structural properties of proportional fairness:
Stability and insensitivity. Annals of Applied Probability,
2007.

[19] J. Mo and J. Walrand. Fair end-to-end window-based
congestion control. IEEE/ACM Transactions on
Networking, 8:556–567, October 2000.

[20] W. H. Wang, M. Palaniswami, and S. H. Low. Optimal
flow control and routing in multi-path networks. Perform.
Eval., 52:119–132, April 2003.

[21] D. Wischik, M. Handley, and M. B. Braun. The resource
pooling principle. SIGCOMM Comput. Commun. Rev.,
38:47–52, September 2008.

[22] Y. Yi and M. Chiang. Stochastic network utility
maximization. European Transactions on
Telecommunications, 19:421–442, June 2008.



APPENDIX
A. STABILITY REGION FOR MULTIPATH

BALANCED FAIR ALLOCATION
We prove the result using an approach similar to that in

[3]. We start by identifying a special property satisfied by
the balance function associated with multipath balanced fair
allocations which also establishes its uniqueness.

Lemma 1. For any balance function Φ̃ : Z|S| → [0,∞)

with Φ̃(0) = 1, and splitting function f : Z|S| → F , if
the corresponding insensitive allocation satisfies (1) and (2),
then

Φ(x) ≤ Φ̃(x), ∀x ∈ Z|S|.

Proof. We prove the result using induction on the total
number of flows |x| in the network state x. Clearly the result
holds for x = 0. Suppose that the result is true for network
states x such that |x| = n − 1. For network states x such
that |x| = n, from (11), we have

Φ(x) ≤ max

{
max

s∈S:xs>0

Φ(x− es)

asxs
,

max
l∈L

( ∑
s∈S,rs∈Rs

Al,rs

cl
fs,rs(x)Φ(x− es)

)}
.

Using the induction assumption,

Φ(x) ≤ max

{
max

s∈S:xs>0

Φ̃(x− es)

asxs
,

max
l∈L

( ∑
s∈S,rs∈Rs

Al,rs

cl
fs,rs(x)Φ̃(x− es)

)}
.

Then,

Φ(x) ≤ Φ̃(x)max

{
max

s∈S:xs>0

ϕ̃s(x)

asxs
,

max
l∈L

( ∑
s∈S,rs∈Rs

Al,rs

cl
fs,rs(x)ϕ̃s(x)

)}
.

Since, the insensitive allocation corresponding to Φ̃(x) sat-
isfies (1) and (2), we conclude that

Φ(x) ≤ Φ̃(x).

Now, we complete the proof of Theorem 2 using steps sim-

ilar to that in [3]. Suppose ρ ∈ ΓM . Then, ρ ∈ Γ
(
f
′
)
for

some f
′
∈ F , and (1 + ϵ)ρ ∈ Γ

(
f
′
)

for some ϵ > 0. Con-

sider the insensitive allocation corresponding to the splitting

function f
′
and the balance function

Φ̃(x) =
∏
s∈S

1

((1 + ϵ) ρs)
xs

∀ x ∈ Z|S|.

Since Φ̃s(x) = (1 + ϵ) ρs ∀ x ∈ Z|S| and (1 + ϵ)ρ ∈ Γ
(
f
′
)
,

the allocation is feasible. Hence, the stability condition (4)
is satisfied since (using Lemma 1)∑
x∈Z|S|

+

Φ(x)ρx ≤
∑

x∈Z|S|
+

Φ̃(x)ρx =
∑

x∈Z|S|
+

∏
s∈S

1

((1 + ϵ))xs
<∞.

B. A SKETCH OF THE PROOF OF THE UP-
PER BOUND

A sketch of the proof of Theorem 4 is given below. We use
the following intermediate results to prove the Theorem.

The first result roughly states that if we ignore the peak
rate constraints and assume n̄t(H) = 1, then we can treat
class t as if it is traversing the pooled resources in Dt instead
of the links in the set {l : Alrt > 0 for some rt}.

Lemma 2. For any class t ∈ S,

min
f∈F

max
l∈L

(∑
s∈S

∑
rs∈Rs

Al,rs

cl
fs,rsΦ(x− es)

)
≤

min
f∈F

max

max
l∈L

∑
s∈S,s̸=t

∑
rs∈Rs

Al,rs

cl
fs,rsΦ(x− es), max

H∈Dt(∑
l∈H,s̸=t,rs∈Rs

Al,rsfs,rsΦ(x− es) + n̄t(H)Φ(x− et)

c(H)

))
.

Proof. Let ψ∗ be the optimal value of the optimization
problem in (12). Thus, we can show that ψ∗ is also the
optimal value of an equivalent optimization problem:

minψ such that∑
s,rs∈Rs

Al,rsfs,rsΦ(x− es) ≤ ψcl ∀ l ∈ L \
∪

H∈Dt

H;

∑
s,rs∈Rs

Al,rsfs,rsΦ(x− es) ≤ ψcl ∀ l ∈
∪

H∈Dt

H;

∑
l∈H,s̸=t,rs∈Rs

Al,rsfs,rsΦ(x− es)+∑
rt∈Rt

∑
l∈H

Al,rtft,rtΦ(x− et) ≤ ψC(H) ∀ H ∈ Dt;

fs ∈ Fs ∀ s ∈ S.

We tighten some of the constraints to get an optimization
problem with optimal ψ∗

1 : OPT-1

minψ such that∑
s,rs∈Rs

Al,rsfs,rsΦ(x− es) ≤ ψcl ∀ l ∈ L \
∪

H∈Dt

H;

∑
s,rs∈Rs

Al,rsfs,rsΦ(x− es) ≤ ψcl ∀ l ∈
∪

H∈Dt

H;

∑
l∈H,s̸=t,rs∈Rs

Al,rsfs,rsΦ(x− es)+

n̄t(H)Φ(x− et) ≤ ψC(H) ∀ H ∈ Dt;

fs ∈ Fs ∀ s ∈ S.

Clearly, ψ∗ ≤ ψ
∗
1 . Now, we loosen some constraints from

above optimization problem to obtain the following problem



with optimal ψ∗
2 : OPT-2

minψ such that∑
s,rs∈Rs

Al,rsfs,rsΦ(x− es) ≤ ψcl ∀ l ∈ L \
∪

H∈Dt

H;

∑
s ̸=t,rs∈Rs

Al,rsfs,rsΦ(x− es) ≤ ψcl ∀ l ∈
∪

H∈Dt

H;

∑
l∈H,s̸=t,rs∈Rs

Al,rsfs,rsΦ(x− es)+

+n̄t(H)Φ(x− et) ≤ ψC(H) ∀ H ∈ Dt;

fs ∈ Fs ∀ s ∈ S \ {t} .

Clearly, ψ∗
2 ≤ ψ∗

1 . Next, we show that ψ∗
2 = ψ∗

1 . Let
f∗ ∈

∏
s∈S\{t} Fs be the optimal fraction vector for OPT-2.

Next, we obtain a f
′
∈ F using f∗ and ψ∗

2 which satisfies all
constraints in OPT-1. Let

dl =

ψ∗
2cl −

∑
s̸=t,rs∈Rs

Al,rsf
∗
s,rsΦ(x− es)

 .

Consider the following optimization problem: OPT-2.1

max
∑

rt∈Rt

prt such that

∑
rt∈Rt

Al,rtprt ≤ dl
Φ(x− et)

∀ l ∈
∪

H∈Dt

H; (26)

prt ≥ 0 ∀ rt ∈ Rt.

Let p∗ be the optimal solution to OPT-2.1. In the solu-
tion to the above optimization problem, for each rt ∈ Rt,
there is a link lrt ∈ rt ∩

∪
H∈Dt

H such that the constraint
corresponding to the link lrt in (26) is satisfied with equal-
ity (otherwise, the variable prt can be increased to strictly

improve on the optimal solution). Now, let H̃ be the set of

all such links. Then, from the above construction, H̃ ∈ Bt.
Let H∗ ∈ Dt such that H∗ ⊆ H̃. Further, since the links in
H∗ also satisfy (26) with equality,∑

l∈H∗

∑
rt∈Rt

Al,rtp
∗
rtΦ(x− et) =

∑
l∈H∗

dl

=
∑
l∈H∗

ψ∗
2cl −

∑
s ̸=t,rs∈Rs

Al,rsf
∗
s,rsΦ(x− es)


≥ n̄t(H∗)Φ(x− et)

Also,∑
l∈H∗

∑
rt∈Rt

Al,rtp
∗
rtΦ(x− et) ≤ n̄t(H∗)Φ(x− et)

∑
rt∈Rt

p∗rt .

Hence,
∑

rt∈Rt
p∗rt ≥ 1. Now, let f

′
s = f∗s ∀ s ̸= t, and let

f
′
t,rt =

p∗rt∑
rt∈Rt

p∗rt
∀ rt ∈ Rt.

Since p∗ is the optimal solution to OPT-2.1, f
′
t,rt =

p∗rt∑
rt∈Rt

p∗rt
and

∑
rt∈Rt

p∗rt ≥ 1, we have that

∑
rt∈Rt

Al,rtf
′
t,rt ≤

∑
rt∈Rt

Al,rtp
∗
rt ≤ dl

Φ(x− et)
∀ l ∈

∪
H∈Dt

H.

Also, from (26) and ψ∗
2 ≤ ψ∗

1 ,∑
rt∈Rt

Al,rtf
′
t,rtΦ(x− et)

≤ ψ∗
1cl −

∑
s ̸=t,rs∈Rs

Al,rsf
′
s,rsΦ(x− es) ∀ l ∈

∪
H∈Dt

H.

Thus, all constraints removed when obtaining OPT-2 from
OPT-1 still hold. Hence, ψ∗

2 ≥ ψ∗
1 . Thus, ψ∗ ≤ ψ∗

2 , and
from the formulation OPT-2, the result follows.

The next result is mainly useful for a class u ∈ S with |Du| =
1 in which case it lower bounds the allocated bandwidth
going through the resource pool in Du. It can be proved
using induction on |x| and Lemma 2.

Lemma 3. For any class u ∈ S with no peak rate con-
straints, i.e., au = ∞, and state x where xu > 0, we have

Φ(x) ≤
∑

H∈Du

1

c(H)

∑
s∈P(H)

ns(H)Φ(x− es).

The next result can be proved using Lemma 3 and some
steps similar to that in the mean per bit delay lower bound.

Lemma 4. Consider a class u ∈ S with au = ∞ and
|Du| = 1. If ρ̄(H) < c(H), then

τu ≤ n̄u(H)

c(H)− ρ̄(H)
.

We follow the approach in [2] and modify the original net-
work by introducing new classes so and sH ∀ H ∈ Dt referred
to as virtual classes. Virtual class s0 has the same routes as
class t and has the same peak rate constraints, i.e., R0 = Rt

and a0 = at. A virtual class sH uses routes RH where
RH = {{l} : l ∈ H} and has no peak rate constraint, i.e.,
aH = ∞. Let ρ̃ be the vector denoting the traffic intensity
associated with the virtual classes, i.e., ρ̃H is the traffic in-
tensity of sH and ρ̃0 is the traffic intensity of s0. Further,
let Φ̃ denote the balance function associated with the new
network. Then, we have the following result which can be
proved using Lemma 3 and induction on |x|.

Lemma 5. For any class t ∈ S and state x,

Φ̃(x, e0) ≤ btΦ̃(x,0) +∑
H∈Dt

n̄t(H)

c(H)

∑
s∈P(H)

n̄s(H)Φ̃(x− es, eH).

The upper bound given in Theorem 4 mainly follows from
Lemma 5 by applying Lemma 4 (on each virtual class sH ,
H ∈ Dt), letting ρ̃→ 0 noting that

τt = lim
ρ̃→0

τ̃0.

and following some steps similar to that in the lower bound.
Since we let ρ̃→ 0, the performance of the flows in the mod-
ified network is same as that in the original network.

In proving Lemmas 3 and 5, additional work is required
to deal with the dependency of the splitting function on the
network state.


